Dipeptides from Methionine and S-Methylcysteine as Chiral Ligands for Asymmetric Michael Reactions

Jens Christoffers
Berlin, Institut für Organische Chemie der Technischen Universität

Received January 19th, 1999, respectively May 4th, 1999
Keywords: Asymmetric catalysis, Chirality, Michael additions, Peptides, Thioether ligands

Abstract

Dipeptides derived from methionine and S-methylcysteine $\mathbf{3 a}-\mathbf{d}$ have been prepared and screened as chiral ligands in combination with 13 metal salts $\mathbf{4 a}-\mathbf{m}$ towards

the catalysis of an asymmetric Michael reaction of a β-keto ester $\mathbf{1}$ with methyl vinyl ketone $\mathbf{2}$ resulting in an optimal ee of 18% achieved with $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O} \mathbf{4 c}$ as the metal salt.

The utilization of peptides as libraries of chiral ligands in a combinatorial search for asymmetric catalysts can be a successful approach [1]. In our group we are focusing on the application of polydentate thioether ligands [2] in the transition metal catalysis of asymmetric Michael reactions [3]. In this context we wish to report on our results in the screening of four dipeptides $\mathbf{3 a}-\mathbf{d}$ derived from methionine (MET) and S-methylcysteine (SMC) in combination with 13 metal compounds $\mathbf{4 a}-$ \mathbf{m} (Table 1) towards the catalysis of the Michael reaction of oxoester 1 with methyl vinyl ketone 2 to give the 1,5 -dicarbonyl compound 5 bearing a quaternary stereocenter.

Scheme 1 Metal catalyzed Michael reactions of donor 1 with acceptor 2; in situ-formation of complexes of chiral ligands $\mathbf{3 a}-\mathbf{d}$ with metal salts $\mathbf{4 a}-\mathbf{m}$

Results and Discussion

The dipeptide ethyl esters $\mathbf{3 a}-\mathbf{d}$ were prepared by a standard technique [4] ($\mathrm{DCC}-\mathrm{NEt}_{3}$, cat. DMAP) from N-Boc-SMC [5] and N-Boc-MET [6], resp. and the hydrochlorides of SMC-OEt [7] and MET-OEt [8], resp. Intermediate N-Boc-dipeptides $\mathbf{6 a - d}$ (lettering like in $\mathbf{3 a}-\mathbf{d})$ were deprotected with TFA- $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to furnish $\mathbf{3 a}-\mathbf{d}$ in very good overall yields.

All four ligands $\mathbf{3 a}-\mathbf{d}$ were separately screened together with each of the thirteen metal salts $\mathbf{4 a}-\mathbf{m}$ listed in Table 1 forming the catalytically active complexes in situ. Practically, 1.0 eq. of donor $\mathbf{1}$ was treated with 0.05 eq. of $\mathbf{4}$ and 0.075 eq. of the chiral ligands $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent at room temperature. After equilibration (1 to 2 h) a small excess of the acceptor 2 (1.1 to 1.5 eq) was added, and after stirring the mixture overnight at room temperature all metal containing materials were removed by filtration over SiO_{2}. Analyses of the reaction mixtures and of the enantiomeric excess of 5 [9, 10] were performed by chiral GC. Conversions were usually at least greater than 10% with all compounds $\mathbf{4}$, with $\mathrm{Fe}(\mathrm{III}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{II})$ (and some other single metal-ligand combinations) even greater than 95%. Moreover, it was checked that the ligand itself without any metal did not catalyze the conversion of $\mathbf{1}$ and $\mathbf{2}$ significantly.

With respect to enantioselectivity, ee's greater than 10% were only obtained with ligand $\mathbf{3 d}$ (see Table 1). With $\mathbf{3 b}$ and $\mathbf{3 c}$ only two results were $10 \% e e$. Ligand 3a gave no ee's exceeding 10%. Interestingly, in all cases the formation of the $(-)$-enantiomer $\left(\mathrm{CHCl}_{3}\right)$ as the major isomer was observed, which was assigned to be the R compound [9b]. Although these results are not satisfying at all with respect to an asymmetric synthesis of 5, they show two interesting trends which are providing a promising base for further investigations: Ligands 3ad are the first of all investigated in this field so far (including chiral phosphanes and oxazolines [11]), which
give a selectivity significantly different from zero with Fe (III) as the center metal. In terms of ecological and economical considerations iron is an ideal metal for catalysis [12], however, in the oxidation state Fe (III) is - presumably due to 17 valence electrons (in an octahedron) - kinetically very labile and therefore not commonly applicable for enantioselective catalysis (and thus gives about zero $e e$ with all other ligands investigated so far). Secondly, on the first view selectivities achieved with dipeptides $\mathbf{3 a}-\mathbf{d}$ seem to correlate with the constitutional distance of the thioether moieties. Best results were achieved with MET-MET-OEt (3d). This provides a field for further optimizations, e.g. application of trior other oligopeptides containing at least two MET units. Moreover, investigations on the utilization of Fe (III) in combination with oligopeptide ligands are subject of current work in our laboratory.

Table 1 List of investigated metal salts $\mathbf{4 a}-\mathbf{m}$ and best screening results obtained with ligands $\mathbf{3 b}-\mathbf{d}$, numerical values are $e e$'s of the $(R)-(-)$-enantiomer of 5; no entry: $e e^{\prime}$ s 10%.

metal salt			ligand	
$\mathrm{MX}_{\mathrm{n}} \cdot \mathrm{x} \mathrm{H}_{2} \mathrm{O}$		$\mathbf{3 b}$	$\mathbf{3 c}$	$\mathbf{3 d}$
$\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 a}$	-	-	-
$\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 b}$	-	-	11
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 c}$	-	-	18
$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 d}$	-	-	13
$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 e}$	-	-	-
$\mathrm{Co}\left(\mathrm{OAc}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$	$\mathbf{4 f}$	-	-	10
$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 g}$	-	10	-
$\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 h}$	-	-	-
${\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}}^{\mathbf{4 i}}$	-	-	12	
AgOAc	$\mathbf{4 j}$	-	10	10
ZnCl_{2}	$\mathbf{4 k}$	-	-	-
SnCl		$\mathbf{4 l}$	10	-
$\mathrm{Pb}(\mathrm{OAc})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{4 m}$	-	-	-

This work was supported by Prof. S. Blechert and the Institut für Organische Chemie der TU Berlin. We are also grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and fellowships.

Experimental

Column chromatography was accomplished with Merck silica gel (type 60, 0.063-0.200 mm) using tert-butyl methyl ether (MTB) and petroleum ether (b.p. $40-60^{\circ} \mathrm{C}$) (PE). ${ }^{1} \mathrm{H}$ NMR: Bruker AM 400 (400 MHz). - ${ }^{13} \mathrm{C}$ NMR: Bruker AC $200(50 \mathrm{MHz})$, assignments were made using DEPT experiments. - MS: Varian MAT 711 and MAT 955Q (high resolution). - IR: Nicolet Magna IR 750. - Optical rotations: Perkin Elmer Polarimeter 341. - Chiral GC analysis: HP 5890 II with FI detection and a Shimadzu C-R6A integrator, Mach-erey-Nagel column FS-LIPODEX E ($25 \mathrm{~m}, 0.25 \mathrm{~mm}$), nitrogen carrier gas. - All reagents used were commercially avail-
able. - The following compounds were prepared according to literature procedures: N-Boc-SMC [5], N-Boc-MET [6], $\mathrm{SMC}-\mathrm{OEt} \cdot \mathrm{HCl}$ [7], MET-OEt • HCl [8].

Dipeptide Formation (General Procedure)

Amino acid ethyl ester hydrochloride (3.00 mmol , SMC-OEt $\cdot \mathrm{HCl}: 599 \mathrm{mg}$, MET-OEt $\cdot \mathrm{HCl}: 641 \mathrm{mg}$) was added portionwise to a solution of N-Boc amino acid ($3.00 \mathrm{mmol}, N$-BocSMC: $706 \mathrm{mg}, N$-Boc-MET: 748 mg), DCC (3.00 mmol , 599 mg), DMAP ($0.15 \mathrm{mmol}, 18 \mathrm{mg}$), and $\mathrm{NEt}_{3}(3.00 \mathrm{mmol}$, $303 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$. The resulting suspension was stirred overnight at room temperature, then completely transferred onto a SiO_{2} column ($l=10 \mathrm{~cm}, d=3 \mathrm{~cm}$), and the product was eluted with PE/MTB $(1: 5)$ to give the N-Boc dipeptide ethyl ester as a colorless oil in $90-97 \%$ yield.
N -(tert-Butyloxycarbonyl)-S-methylcysteinyl-S-methylcysteine ethyl ester (6a)
$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{MTB} 1: 5\right)=0.52 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta / \mathrm{ppm}=1.26\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.42(\mathrm{~s}$, $\left.9 \mathrm{H} ; 3 \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.82-$ $2.99\left(\mathrm{~m}, 4 \mathrm{H} ; 2 \mathrm{SCH}_{2}\right), 4.19\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 4.26-$ 4.32 (m, 1H; NCH), 4.74 (td, $J=7.6 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$; NCH), 5.45 (d, br., $J=7.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 7.25 (d, br., $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) .-{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}$ $=14.01\left(\mathrm{CH}_{3}\right), 15.77\left(\mathrm{CH}_{3}\right), 16.13\left(\mathrm{CH}_{3}\right), 28.18\left(\mathrm{CH}_{3}\right), 36.21$ $\left(\mathrm{CH}_{2}\right), 36.33\left(\mathrm{CH}_{2}\right), 51.92(\mathrm{CH}), 53.36(\mathrm{CH}), 61.77\left(\mathrm{CH}_{2}\right)$, 80.33 (C), 155.20 (C=O), 170.26 (C=O), 170.54 (C=O). - IR (ATR): $\tilde{\mathrm{v}} / \mathrm{cm}^{-1}=3306$ (s), 2978 (m), 2921 (m), 1741 (s), 1715 (s), 1661 (vs), 1516 (vs), 1367 (m), 1249 (m), 1167 (s), 1024 (m), 866 (m). - MS (EI, 70 eV), m / z (\%): 380 (1) $\left[\mathrm{M}^{+}\right], 307$ (12) $\left[\mathrm{M}^{+}-t-\mathrm{BuO}\right], 263$ (70) $\left[\mathrm{M}^{+}-t-\mathrm{BuOCONH}_{2}\right]$, 216 (68) [t - $\left.\mathrm{BuOCONC}\left(\mathrm{CH}_{2} \mathrm{SMe}\right) \mathrm{CO}^{+}\right]$, 146 (91) $\left[\mathrm{MeSCH}_{2}\right.$ $\left.\mathrm{CCO}_{2} \mathrm{Et}^{+}\right], 117$ (94) [t - $\left.\mathrm{BuOCONH}{ }_{2}{ }^{+}\right], 101$ (52) $\left[t-\mathrm{BuOCO}^{+}\right]$, 90 (93) $\left[\mathrm{MeSCH}_{2} \mathrm{CHNH}_{2}{ }^{+}\right], 61$ (59) $\left[\mathrm{MeSCH}_{2}{ }^{+}\right]$, 57 (100) $[t-$ $\left.\mathrm{Bu}^{+}\right] .-[\alpha]_{\mathrm{D}}{ }^{\mathrm{RT}}=+2.1\left(\mathrm{c} 4.8 \mathrm{~g} / \mathrm{l}, \mathrm{CHCl}_{3}\right) .-\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ (380.52): Mol. mass calcd. 380.1440 , found 380.1447 (HRMS).
N-(tert-Butyloxycarbonyl)-S-methylcysteinylmethionine ethyl ester (6b)
$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{MTB}\right)=0.60 .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta / \mathrm{ppm}=1.25\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H} ; 3 \mathrm{CH}_{3}\right)$, $1.93-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.06\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.08-2.20(\mathrm{~m}, 1 \mathrm{H})$, $2.13\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.46-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=$ $13.9 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=13.9 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 4.21-4.25(\mathrm{~m}, 1 \mathrm{H}$; $\mathrm{NCH}), 4.62$ (td, $J=7.5 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}), 5.41$ (d, br., $J=6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 7.05 (d, br., $J=7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$). ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}=14.05\left(\mathrm{CH}_{3}\right)$, $15.35\left(\mathrm{CH}_{3}\right), 15.86\left(\mathrm{CH}_{3}\right), 28.19\left(\mathrm{CH}_{3}\right), 29.75\left(\mathrm{CH}_{2}\right), 31.59$ $\left(\mathrm{CH}_{2}\right), 36.29\left(\mathrm{CH}_{2}\right), 49.33\left(\mathrm{CH}_{2}\right), 53.50\left(\mathrm{CH}_{2}\right), 61.61\left(\mathrm{CH}_{2}\right)$, 80.37 (C), 155.24 (C=O), 170.48 (C=O), 171.28 (C=O). - IR (ATR): $\tilde{\mathrm{v}} / \mathrm{cm}^{-1}=3313$ (s), 2978 (m), 2919 (m), 1738 (s), 1714 (s), 1661 (vs), 1519 (vs), 1446 (m), 1367 (s), 1250 (s), 1166 (vs), 1022 (s), 865 (m). - MS (EI, 70 eV), m/z (\%): 395 (4) $\left[\mathrm{M}+\mathrm{H}^{+}\right], 338$ (7) $\left[\mathrm{M}^{+}-t\right.$-BuH], 321 (8) $\left[\mathrm{M}^{+}-t\right.$-BuO], 277 (58) $\left[\mathrm{EtO}_{2} \mathrm{CCH}\left(\mathrm{NHCO}_{2} t-\mathrm{Bu}\right)\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SMe}^{+}\right]$, 264 (22) $\left[\mathrm{EtO}_{2} \mathrm{CCH}\left(\mathrm{NHCO}_{2} t-\mathrm{Bu}\right) \mathrm{CH}_{2} \mathrm{SH}_{2}{ }^{+}\right], 203(100)\left[\mathrm{M}^{+}-t-\mathrm{BuO}-\right.$ $\left.\mathrm{COH}-\mathrm{MeSCH}_{2} \mathrm{CHNH}_{2}\right], 90(17)\left[\mathrm{MeSCH}_{2} \mathrm{CHNH}_{2}{ }^{+}\right], 57$ (34) $\left[t-\mathrm{Bu}^{+}\right] .-[\alpha]_{\mathrm{D}}^{\mathrm{RT}}=+6.0\left(\mathrm{c} 2.0 \mathrm{~g} / \mathrm{l}, \mathrm{CHCl}_{3}\right) .-\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$
(394.54): Mol. mass calcd. $395.1674\left(\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}\right)$, found 395.1675 ($\mathrm{M}+\mathrm{H}^{+}$, HRMS).
N-(tert.-Butyloxycarbonyl)methionyl-S-methylcysteine ethyl ester (6c)
$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{MTB} 1: 5\right)=0.46 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta / \mathrm{ppm}=1.11\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.26(\mathrm{~s}$, $9 \mathrm{H} ; 3 \mathrm{CH}_{3}$), 1.73-1.84 (m, 2H; CH2), $1.92\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right)$, 1.93 (s, 3H; SCH3), 2.41 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{SCH}_{2}$), 2.72$2.82\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{SCH}_{2}\right), 4.03\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 4.20-$ $4.26(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NCH}), 4.60(\mathrm{dt}, J=7.7 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$; NCH), 5.62 (d, br., $J=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 7.26 (d, br., $J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}) .-{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}$ $=13.93\left(\mathrm{CH}_{3}\right), 14.99\left(\mathrm{CH}_{3}\right), 15.97\left(\mathrm{CH}_{3}\right), 28.12\left(\mathrm{CH}_{3}\right), 29.87$ $\left(\mathrm{CH}_{2}\right), 31.56\left(\mathrm{CH}_{2}\right), 36.01\left(\mathrm{CH}_{2}\right), 51.59(\mathrm{CH}), 53.16(\mathrm{CH})$, $61.60\left(\mathrm{CH}_{2}\right), 79.80(\mathrm{C}), 155.23(\mathrm{C}=\mathrm{O}), 170.31(\mathrm{C}=\mathrm{O}), 171.38$ (C=O). - IR (ATR): $\tilde{v} / \mathrm{cm}^{-1}=3310(\mathrm{~s}), 2978$ (m), 2919 (m), 1742 (s), 1713 (s), 1662 (vs), 1520 (vs), 1444 (m), 1392 (m), 1367 (s), 1305 (m), 1250 (s), 1204 (s), 1168 (vs), 1047 (m), 1027 (m), 863 (m). - MS (EI, 70 eV), m / z (\%): 394 (2) $\left[\mathrm{M}^{+}\right], 338(10)\left[\mathrm{M}^{+}-t-\mathrm{BuH}\right], 320(26)\left[\mathrm{M}^{+}-t-\mathrm{BuOH}\right], 264$ (86) $\left[\mathrm{EtO}_{2} \mathrm{CCH}\left(\mathrm{NHCO}_{2} t\right.\right.$ - Bu) $\left.\mathrm{CH}_{2} \mathrm{SMe}+\mathrm{H}^{+}\right], 164$ (45) $\left[\mathrm{EtO}_{2} \mathrm{CCH}\left(\mathrm{NH}_{3}\right) \mathrm{CH}_{2} \mathrm{SMe}^{+}\right], 147$ (49) $\left[\mathrm{MeSCH}_{2} \mathrm{CCO}_{2} \mathrm{Et}+\right.$ $\left.\mathrm{H}^{+}\right], 118$ (52) $\left[t-\mathrm{BuOCONH}_{3}{ }^{+}\right], 104$ (71) $\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2}\right.$ $\left.\mathrm{CHNH}_{2}{ }^{+}\right], 61(85)\left[\mathrm{MeSCH}_{2}{ }^{+}\right], 57(100)\left[t-\mathrm{Bu}^{+}\right] .-[\alpha]_{\mathrm{DT}}{ }^{\mathrm{RT}}=$ +6.0 (c $3.7 \mathrm{~g} / \mathrm{l}, \mathrm{CHCl}_{3}$). $-\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ (394.56): Mol. mass calcd. 394.1596, found 394.2599 (HRMS).
N -(tert.-Butyloxycarbonyl)methionylmethionine ethyl ester (6d)
$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{MTB} 1: 5\right)=0.48 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$ $\delta / \mathrm{ppm}=1.16\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 9 \mathrm{H} ; 3 \mathrm{CH}_{3}\right)$, $1.77-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.96\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right)$, $2.39\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{SCH}_{2}\right), 2.45\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{SCH}_{2}\right)$, 4.07 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}$), 4.20-4.24 (m, 1H; NCH), 4.53 (td, $J=7.8 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}), 5.52$ (d, br., $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 7.12 (d, br., $J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}) .-{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}=13.92\left(\mathrm{CH}_{2}\right), 14.94\left(\mathrm{CH}_{3}\right)$, $15.16\left(\mathrm{CH}_{3}\right), 28.09\left(\mathrm{CH}_{3}\right), 29.61\left(\mathrm{CH}_{2}\right), 29.81\left(\mathrm{CH}_{2}\right), 31.33$ $\left(\mathrm{CH}_{2}\right), 31.41\left(\mathrm{CH}_{2}\right), 51.36(\mathrm{CH}), 53.12(\mathrm{CH}), 61.35\left(\mathrm{CH}_{2}\right)$, 79.77 (C), 155.32 (C=O), 171.43 (C=O), 171.43 (C=O). - IR (ATR): $\tilde{v} / \mathrm{cm}^{-1}=3310(\mathrm{~s}), 2978(\mathrm{~m}), 1918$ (m), 1741 (vs), 1660 (vs), 1524 (vs), 1445 (s), 1392 (m), 1367 (s), 1299 (m), 1250 (s), 1168 (vs), 1025 (m), 863 (m). - MS (EI, $70 \mathrm{eV}), m / z(\%): 408$ (3) $\left[\mathrm{M}^{+}\right], 352$ (10) $\left[\mathrm{M}+\mathrm{H}^{+}-t-\mathrm{Bu}\right], 334$ (26) $\left[\mathrm{M}^{+}-t-\mathrm{BuOH}\right], 278$ (84) $\left[\mathrm{EtO}_{2} \mathrm{CCH}\left(\mathrm{NHCO}_{2} t-\mathrm{Bu}\right)\left(\mathrm{CH}_{2}\right)_{2}\right.$ $\left.\mathrm{SMe}+\mathrm{H}^{+}\right], 178(58)\left[\mathrm{EtO}_{2} \mathrm{CCH}\left(\mathrm{NH}_{3}\right)\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SMe}^{+}\right], 104$ (90) $\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHNH}_{2}{ }^{+}\right], 61(100)\left[\mathrm{MeSCH}_{2}{ }^{+}\right] .-[\alpha]_{\mathrm{D}}^{\mathrm{RT}}=+7.3$ (c $4.5 \mathrm{~g} / \mathrm{l}, \mathrm{CHCl}_{3}$). $-\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ (408.58): Mol. mass calcd. 408.1753 , found 408.1754 (HRMS).

Deprotection (General Procedure)

An amount of 2.5-3.0 mmol of the N-Boc dipeptide ethyl ester 6 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$, TFA (2 ml) was added, and the resulting solution was stirred overnight at room temperature, and finally, all volatile materials were removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), \mathrm{NaH}-$ CO_{3} (5 ml , saturated aqueous solution) was added, and the suspension was treated with NaHCO_{3} (solid) until the pH was greater than 8. After separation of the layers, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (three times 2 ml), the combined
organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(\mathrm{MeOH})$ to give the dipeptide ethyl ester 3 as a colorless oil in $90-95 \%$ yield.

S-Methylcysteinyl-S-methylcysteine ethyl ester (3a)

$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{MeOH}\right)=0.76 .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta / \mathrm{ppm}=1.25\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~s}, \mathrm{br} ., 2 \mathrm{H} ; \mathrm{NH}_{2}\right)$, $2.06\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.65(\mathrm{dd}, J=$ $13.7 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$; SCHHㅡ), 2.85-2.99 (m, 3H; SCHH, SCH_{2}), $3.52(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}), 4.14-$ $4.20\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 4.72(\mathrm{td}, J=8.2 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$; NCH), 8.13 (d, br., $J=7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}) .-{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}=14.00\left(\mathrm{CH}_{3}\right), 15.15\left(\mathrm{CH}_{3}\right), 16.04$ $\left(\mathrm{CH}_{3}\right), 36.36\left(\mathrm{CH}_{2}\right), 39.34\left(\mathrm{CH}_{2}\right), 51.30(\mathrm{CH}), 53.24(\mathrm{CH})$, $61.60\left(\mathrm{CH}_{2}\right), 170.63(\mathrm{C}=\mathrm{O}), 173.42(\mathrm{C}=\mathrm{O})$. - IR (ATR): $\tilde{v} / \mathrm{cm}^{-1}=3358(\mathrm{~m}), 3314(\mathrm{~m}), 2980(\mathrm{~m}), 2918(\mathrm{~s}), 1738(\mathrm{~s})$, 1671 (vs), 1505 (s), 1427 (m), 1371 (m), 1341 (m), 1325 (m), 1305 (m), 1250 (m), 1197 (s), 1028 (m), 859 (m). - MS (EI, 70 eV), $m / z(\%): 281$ (10) $\left[\mathrm{M}+\mathrm{H}^{+}\right], 264$ (22) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{NH}_{2}\right], 90(100)\left[\mathrm{MeSCH}_{2} \mathrm{CHNH}_{2}{ }^{+}\right] .-[\alpha]_{\mathrm{D}}^{\mathrm{RT}}=-29.3$ (c 13.6 $\mathrm{g} / \mathrm{l}, \mathrm{CHCl}_{3}$). - $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ (280.40): Mol. mass calcd. 281.0994 (for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$), found $281.0996\left(\mathrm{M}+\mathrm{H}^{+}\right.$, HRMS).

S-Methylcysteinylmethionine ethyl ester (3b)

$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{MeOH}\right)=0.62 .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta / \mathrm{ppm}=1.24\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.79\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{NH}_{2}\right)$, 1.89-1.98(m, 1H), $2.04\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right)$, 2.05-2.17 (m, 1H), 2.46 (t, J=7.7 Hz, 2H; SCH 2), $2.65(\mathrm{dd}$, $J=13.6 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{SC} H \mathrm{H}), 2.94(\mathrm{dd}, J=13.6 \mathrm{~Hz}$, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$; SCHH$), 3.51(\mathrm{dd}, J=8.6 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{NCH}), 4.16\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 4.61(\mathrm{td}, J=7.9 \mathrm{~Hz}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}), 7.98$ (d, br., $J=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}) .{ }^{13} \mathrm{C}$ $\left({ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}=14.02\left(\mathrm{CH}_{3}\right), 15.29$ $\left(\mathrm{CH}_{3}\right)$, $15.37\left(\mathrm{CH}_{3}\right), 29.87\left(\mathrm{CH}_{2}\right), 31.79\left(\mathrm{CH}_{2}\right), 39.51\left(\mathrm{CH}_{2}\right)$, $51.15(\mathrm{CH}), 53.32(\mathrm{CH}), 61.43\left(\mathrm{CH}_{2}\right), 171.62(\mathrm{C}=\mathrm{O}), 173.39$ (C=O). - IR (ATR): $\tilde{v} / \mathrm{cm}^{-1}=3358(\mathrm{~m}), 3306(\mathrm{~m}), 2979(\mathrm{~m})$, 2817 (s), 1737 (vs), 1669 (vs), 1509 (vs), 1437 (s), 1373 (m), 1198 (s), 1024 (m), 862 (m). - MS (EI, 70 eV), $\mathrm{m} / \mathrm{z}(\%): 294$ (1) $\left[\mathrm{M}^{+}\right], 277$ (8) $\left[\mathrm{M}^{+}-\mathrm{NH}_{3}\right], 233$ (10) $\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{MeSCH}_{2}{ }^{+}\right], 159$ (18) [$\left.\mathrm{M}^{+}-\mathrm{MeSCH}_{2}-\mathrm{CO}_{2} \mathrm{Et}-\mathrm{H}\right], 90$ (100) $\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHNH}_{2}{ }^{+}\right], 61(16)\left[\mathrm{MeSCH}_{2}{ }^{+}\right] .-[\alpha]_{\mathrm{D}}^{\mathrm{RT}}=-21.3$ (c $3.8 \mathrm{~g} / \mathrm{l}, \mathrm{CHCl}_{3}$). $-\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ (294.42): Mol. mass calcd. 294.1072, found 294.1072 (HRMS).

Methionyl-S-methylcysteine ethyl ester (3c)

$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{MeOH}\right)=0.61 .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta / \mathrm{ppm}=1.18\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~s}, \mathrm{br} ., \mathrm{NH}_{2}\right)$, $1.63-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.99\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{SCH}_{3}\right)$, 2.02 (s, 3H; SCH 3), $2.47-2.56\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{SCH}_{2}\right), 2.80(\mathrm{dd}, J=$ $13.9 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$; SCHH), 2.87 (dd, $J=13.9 \mathrm{~Hz}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}$; SCHH $), 3.44(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$; NCH), $4.10\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 4.64(\mathrm{td}, J=8.1 \mathrm{~Hz}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}$), 7.86 (d, br., $J=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$). $-{ }^{13} \mathrm{C}$ $\left({ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}=13.83\left(\mathrm{CH}_{3}\right), 14.95$ $\left(\mathrm{CH}_{3}\right), 15.80\left(\mathrm{CH}_{3}\right) 30.17\left(\mathrm{CH}_{2}\right), 33.79\left(\mathrm{CH}_{2}\right), 36.15\left(\mathrm{CH}_{2}\right)$, $51.03(\mathrm{CH}), 53.85(\mathrm{CH}), 61.37\left(\mathrm{CH}_{2}\right), 170.56(\mathrm{C}=\mathrm{O}), 174.38$ (C=O). - IR (ATR): $\tilde{v} / \mathrm{cm}^{-1}=3316$ (s), 2979 (m), 2917 (s), 1738 (s), 1669 (vs), 1506 (vs), 1199 (s), 1029 (s). - MS (EI, $70 \mathrm{eV}), m / z(\%): 294(28)\left[\mathrm{M}^{+}\right], 220(22)\left[\mathrm{M}^{+}-\mathrm{MeSCH}_{2} \mathrm{CH}\right]$, 164 (29) $\left[\mathrm{MeSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}+\right], 147$ (38) $\left[\mathrm{MeSCH}_{2} \mathrm{CO}_{2}\right.$ $\left.\mathrm{Et}^{+}\right], 131$ (76) $\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{NH}) \mathrm{CO}^{+}\right], 104$ (100)
$\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHNH}_{2}{ }^{+}\right], 61$ (90) $\left[\mathrm{MeSCH}_{2}{ }^{+}\right], 56$ (86) $[\mathrm{NHCH}$ $\left.\left(\mathrm{CH}_{2}\right)_{2}{ }^{+}\right] .-[\alpha]_{\mathrm{D}}^{\mathrm{RT}}=-9.9\left(\mathrm{c} 7.5 \mathrm{~g} / \mathrm{l}, \mathrm{CHCl}_{3}\right) .-\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ (294.42): Mol. mass calcd. 294.1072, found 294.1077 (HRMS).
Methionylmethionine ethyl ester ($\mathbf{3 d}$)
$R_{\mathrm{f}}\left(\mathrm{SiO}_{2}, \mathrm{MeOH}\right)=0.61 .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$ $\delta / \mathrm{ppm}=1.22\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.55\left(\mathrm{~s}, \mathrm{br} ., 2 \mathrm{H} ; \mathrm{NH}_{2}\right)$, $1.67-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.14(\mathrm{~m}, 2 \mathrm{H})$, $2.03\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{SCH}_{3}\right), 2.38-2.50(\mathrm{~m}, 2 \mathrm{H}$; $\left.\mathrm{SCH}_{2}\right), 2.50-2.62\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{SCH}_{2}\right), 3.46(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}), 4.14\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{OCH}_{2}\right), 4.59(\mathrm{td}$, $J=8.1 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}), 7.75(\mathrm{~d}, \mathrm{br} ., J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{NH}) .-{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta / \mathrm{ppm}=13.99$ $\left(\mathrm{CH}_{3}\right), 15.11\left(\mathrm{CH}_{3}\right), 15.34\left(\mathrm{CH}_{3}\right), 29.89\left(\mathrm{CH}_{2}\right), 30.41\left(\mathrm{CH}_{2}\right)$, $31.71\left(\mathrm{CH}_{2}\right), 33.94\left(\mathrm{CH}_{2}\right), 51.11(\mathrm{CH}), 54.01(\mathrm{CH}), 61.36$ $\left(\mathrm{CH}_{2}\right), 171.66(\mathrm{C}=\mathrm{O}), 174.48(\mathrm{C}=\mathrm{O}) .-\mathrm{IR}(\mathrm{ATR}): \tilde{\mathrm{V}} / \mathrm{cm}^{-1}=$ 3309 (m), 2978 (m), 2915 (s), 1735 (vs), 1658 (vs), 1507 (vs), 1439 (s), 1273 (m), 1193 (vs), 1023 (s), 859 (s). - MS (EI, 70 eV), $m / z(\%): 308$ (52) $\left[\mathrm{M}^{+}\right], 234$ (38) [$\mathrm{M}^{+}-$ $\left.\mathrm{MeSCH}_{2} \mathrm{CH}\right], 178$ (56) $\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{NH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}^{+}\right], 171$ (90) $\left[\mathrm{M}^{+}-\mathrm{MeSCH}_{2}-\mathrm{MeS}-\mathrm{Et}\right], 131$ (78) $\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2}\right.$ $\left.\mathrm{CH}(\mathrm{NH}) \mathrm{CO}^{+}\right], 104(98)\left[\mathrm{MeS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHNH}_{2}{ }^{+}\right]$, 61 (100) $\left[\mathrm{MeSCH}_{2}{ }^{+}\right], 56(94)\left[\mathrm{NHCH}\left(\mathrm{CH}_{2}\right)_{2}{ }^{+}\right] .-[\alpha]_{\mathrm{D}}{ }^{\mathrm{RT}}=+13(\mathrm{c}$ $3.6 \mathrm{~g} / \mathrm{l}, \mathrm{CHCl}_{3}$). $-\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ (308.45): Mol. mass calcd. 308.1228 , found 308.1223 (HRMS).

Ethyl 2-(3-oxobutyl)cyclopentanone-2-carboxylate (5) (General Procedure)

Metal salt 4 ($0.017 \mathrm{mmol}, 5 \mathrm{~mol} \%$), chiral ligand 3 ($0.025 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$) and oxoester $1(52 \mathrm{mg}, 0.33 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$. After stirring for 1 h at room temperature methyl vinyl ketone ($\mathbf{2}$) ($30 \mu \mathrm{l}, 0.37 \mathrm{mmol}$) was added, and the mixture was stirred overnight at room temperature. Subsequently, the mixture was diluted with MTB (1 ml) and directly transferred on a SiO_{2} column (3 cm), and the product was eluted with PE/MTB $1: 1\left(R_{\mathrm{f}}=0.25\right)$. The product mixture was analyzed by chiral GC, isotherm elution $\left(130^{\circ} \mathrm{C}\right)$, enantiomers of $\mathbf{5}: t_{\mathrm{R}}=30.3 \mathrm{~min}[(+)$-enantiomer $]$ and $32.4 \mathrm{~min}[(-)$-enantiomer].

References

[1] a) M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901; b) K. D. Shimizu, B. M. Cole, C. A. Krueger, K.
W. Kuntz, M. L. Snapper, A. H. Hoveyda, Angew. Chem. 1997, 109, 1782; Angew. Chem. Int. Ed. Engl. 1997, 36, 1781; c) M. B. Francis, N. S. Finney, E. N. Jacobsen, J. Am. Chem. Soc. 1996, 188, 8983
[2] a) J. Christoffers, Liebigs Ann./Recueil 1997, 1353; b) J. Christoffers, U. Rößler, Tetrahedron: Asymmetry 1998, 9, 2349
[3] a) K. Yamada, T. Arai, H. Sasai, M. Shibasaki, J. Org. Chem. 1998, 63, 3666; b) Review: M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109, 1290; Angew. Chem. Int. Ed. Engl. 1997, 36, 1236; c) N. End, L. Macko, M. Zehnder, A. Pfaltz, Chem. Eur. J. 1998, 4, 818; d) Review: J. Leonard, E. DiezBarra, S. Merino, Eur. J. Org. Chem. 1998, 2051
[4] A. Q. Lyons, L. D. Pettit, J. Chem. Soc., Dalton Trans. 1984, 2305
[5] M. Medal, Acta Chem. Scand. B 1986, B40, 250
[6] J. Jiang, K. K. Schumacher, M. M. Joullie, F. A. Davis, R. E. Reddy, Tetrahedron Lett. 1994, 35, 2121
[7] J. G. Wilson, L. A. Cohen, J. Am. Chem. Soc. 1963, 85, 560
[8] E. Booth, V. C. E. Burnop. W. E. Jones, J. Chem. Soc. 1944, 666
[9] The asymmetric synthesis of 5 was reported three times before: a) H. Wynberg, R. Helder, Tetrahedron Lett. 1975, 4057; b) Y. Tamai, A. Kamifuku, E. Koshiishi, S. Miyano, Chem. Lett. 1995, 957; c) H. Sasai, E. Emori, T. Arai, M. Shibasaki, Tetrahedron Lett. 1996, 37, 5561
[10] For full spectral data of $\mathbf{5}$ see: J. Christoffers, J. Chem. Soc., Perkin Trans. 1 1997, 3141
[11] J. Christoffers, A. Mann, U. Rößler, unpublished results
[12] Review: J. Christoffers, Eur. J. Org. Chem. 1998, 1259

Address for correspondence:
Dr. J. Christoffers
Technische Universität Berlin Institut für Organische Chemie Sekretariat C3
Straße des 17. Juni 135
D-10623 Berlin
Fax: Internat. code (0) 30-723-1233
E-mail: jchr@wap0105.chem.tu-berlin.de

